Licence MASS UE 32 Probabilités Examen du 6 janvier 2005

 $Dur\acute{e}e: 2h00$

Les calculatrices, y compris les calculatrices programmables sont autorisées ainsi que les tables statistiques (sans annotation).

Exercice 1 : À l'aide de tables statistiques, déterminez les valeurs suivantes :

- 1. On suppose que X suit une loi de Gauss centrée réduite. Donnez les valeurs de $\mathbf{P}(X \le 0.5)$, $\mathbf{P}(X \le -0.5)$, $\mathbf{P}(|X| \le 0.5)$. Déterminez également un réel u tel que $\mathbf{P}(|X| \ge u) = 0.05$.
- 2. On suppose que Y suit une loi du χ^2 à 3 degrés de liberté. Déterminez les valeurs de u tel que $\mathbf{P}(Y \le u) = 0.05$, puis $\mathbf{P}(Y \le u) = 0.025$ puis $\mathbf{P}(Y \le u) = 0.5$ et enfin $\mathbf{P}(Y > u) = 0.05$.
- 3. Pour un même échantillon gaussien, on calcule les intervalles de confiance de niveau 95% et 90%. Lequel de ces deux intervalles est-il le plus large?

Exercice 2:

- 1. Les salaires de 12 femmes d'une entreprise sont les suivants (salaire mensuel en euros) : $1200\ 1800\ 2000\ 2100\ 2400\ 2400\ 2500\ 2500\ 2800\ 2800\ 3000\ 3000$
 - (a) Calculer la moyenne empirique et la variance empirique sans biais des salaires.
 - (b) Calculer la médiane et les premier et troisième quartiles et tracer le box-plot.
 - (c) En supposant l'échantillon gaussien, donner un intervalle de confiance de la moyenne, de niveau 95%.
 - (d) Donner également un intervalle de confiance de la variance, de niveau 95%.
- 2. Dans la même entreprise, les salaires de 10 hommes sont les suivants :

1200 1400 1800 2400 2900 3000 3200 3200 3400 3500

- (a) Calculer les moyenne et variance empiriques sans biais de cet échantillon.
- (b) Quelles sont les hypothèses nécessaires pour comparer les variances de ces deux échantillons. On supposera pour la suite que ces hypothèses sont remplies. Et pour comparer les moyennes?
- (c) Procéder au test de comparaison des variances, de risque 5%.
- (d) Procéder au test de comparaison des moyennes, de risque 5%
- (e) Peut-on conclure que les salaires des hommes et des femmes sont comparables dans cette entreprise?

Exercice 3 : Le tableau suivant donne les résultats d'un sondage au cours duquel on a demandé à des automobilistes le mode de paiement de leur voiture, ainsi que s'ils l'ont achetée neuve ou d'occasion.

	neuve	occasion
comptant	15	5
crédit	45	35

Procéder au test du χ^2 d'indépendance, de risque 5%. Le mode de paiement d'une voiture est-il lié au fait qu'elle soit neuve ou d'occasion?

Exercice 4: Une entreprise a noté quotidiennement le nombre d'appels téléphoniques reçus par son standard, entre 9h et 10h. Le tableau suivant donne le nombre de jours où k appels ont été reçus.

Nombre d'appels							1			l			
Nombre de jours	3	5	12	34	41	30	26	26	14	6	1	0	2

- 1. Calculer la moyenne et la variance empiriques (sans biais pour la variance) de cet échantillon.
- 2. On souhaite effectuer un test du χ^2 d'ajustement de cet échantillon avec une loi de Poisson, de niveau de risque 5%. Que faut-il prendre comme moyenne pour la loi de Poisson? On notera X une variable aléatoire de loi de Poisson de cette moyenne et on rappelle que pour tout $k \in \mathbb{N}$, on a $\mathbf{P}(X=k) = e^{-\lambda} \lambda^k / k!$.
- 3. Calculer $P(X \le 1)$, puis P(X = k) pour k de 2 à 9. En déduire $P(X \ge 10)$.
- 4. Vérifier que l'on peut utiliser les dix classes suivantes pour effectuer un test du χ^2 d'ajustement : la classe $\{0,1\}$, les classes $\{k\}$, pour k de 2 à 9, et la classe $\{n,n \geq 10\}$.
- 5. Dresser un tableau comportant les effectifs empiriques et théoriques se rapportant à ces classes.
- 6. Calculer la distance de Pearson entre cet échantillon et la loi de Poisson.
- 7. Procéder qu test du χ^2 d'ajustement et conclure : peut-on supposer que l'échantillon relève d'une loi de Poisson, pour un test du χ^2 d'ajustement de risque 5%?